Organometallic lanthanide bismuth cluster single-molecule magnets

نویسندگان

چکیده

•Isolation of organometallic f-element bismuth cluster complexes•Heterometallocubane [Ln2Bi6] featuring two lanthanides bridged through a Bi66? unit•Single-molecule magnets containing donors•Magnetic hysteresis in superexchange-coupled lanthanide complexes Single-molecule are molecules that act as nanoscopic analogs to classical and have garnered substantial interest due their potential applications high-density information storage, magnetic refrigeration, spin-based electronics, quantum computation. To realize such applications, memory loss needs be prevented, which requires judicious design coordination complexes. Herein, we developed strategy unprecedented SMMs comprising ions exhibit memory. The core heterometallocubane includes was hitherto unknown. Despite the contracted nature 4f-orbitals, allows significant superexchange, thus defining new platform for SMM design. This peerless class compounds leads also prospects physics synthetic chemistry. (SMMs) can retain polarization absence an external field embody ultimate size limit storage processing. Multimetallic lacking exchange coupling enable fast relaxation pathways attenuate full these species. Employment diamagnetic heavy main group elements with diffuse orbitals may lead strong coupling. bismuth-cluster-bridged complexes, [K(THF)4]2[Cp?2Ln2Bi6] (Cp? = pentamethylcyclopentadienyl; 1-Ln, Ln Tb, Dy), were synthesized via solution approach. neutral features centers by rare Zintl ion, supports ferromagnetic interactions between lanthanides. affords observation blocking open loops solely ions. Both constitute first donors paving way promising targets Molecular magnetism is textbook example synergetic effects arising from interplay chemistry composes vibrant, multidisciplinary, established research field.1Gatteschi D. Sessoli R. Vallain J. Nanomagnets. Oxford University Press, 2006Google Scholar development relies on synthesis molecules, followed thorough magnetic, spectroscopic, theoretical investigations.2Moreno Pineda E. Chilton N.F. Marx Dörfel M. Sells D.O. Neugebauer P. Jiang S.-D. Collison van Slageren McInnes E.J.L. Winpenny R.E.P. Direct measurement dysprosium(III)???dysprosium(III) single-molecule magnet.Nat. Commun. 2014; 5: 5243Google In particular, inorganic enables access wide range organic, coordination, bearing signatures interesting magnet (SMM) behavior.3Woodruff D.N. Layfield R.A. Lanthanide magnets.Chem. Rev. 2013; 113: 5110-5148Google Lanthanides (Ln) especially well suited large anisotropy originating near-unquenched orbital angular momentum spin-orbit coupling.4Rinehart J.D. Long J.R. Exploiting single-ion Sci. 2011; 2: 2078-2085Google Recently, optimization crystal resulted bistability persisting up liquid nitrogen temperature mononuclear Dy-based metallocene complex, representing current performance record SMM.5Guo F.-S. Day B.M. Chen Y.-C. Tong M.-L. Mansikkamäki A. Magnetic 80 kelvin dysprosium magnet.Science. 2018; 362: 1400-1403Google A parallel exploits multimetallic systems, where addition tailored fields, communication highly anisotropic utmost importance. However, requisite spin ground states pose challenge since 4f-orbitals metal only engender weak exchange.6Rinehart Fang Evans W.J. Strong N23?-radical-bridged complexes.Nat. Chem. 3: 538-542Google Here, several viable strategies breakthroughs high-performance enhancing ions, includes, but not limited to, nd radical ligands, single-electron Ln–Ln bonds stabilized endohedral metallofullerenes (EMFs).7Mondal K.C. Sundt Lan Y. Kostakis G.E. Waldmann O. Ungur L. et al.Coexistence distinct exchange-based mechanisms magnetization Co(II)2Dy(III)2 magnet.Angew. Int. Ed. Engl. 2012; 51: 7550-7554Google Scholar, 8Langley S.K. Wielechowski D.P. Vieru V. Moubaraki B. Abrahams B.F. al.A {Cr(III)2Dy(III)2} magnet: 3d exchange.Angew. 52: 12014-12019Google 9Wang Li Q.-W. Wu S.-G. Wan R.-C. Huang G.-Z. Liu J.-L. Reta Giansiracusa M.J. al.Opening axial coupling: mono-decker double-decker metallacrown.Angew. 2021; 60: 5299-5306Google 10Demir S. Jeon I.-R. Harris T.D. Radical ligand-containing magnets.Coord. 2015; 289: 149-176Google 11Liu F. Spree Krylov D.S. Velkos G. Avdoshenko S.M. Popov A.A. Single-electron lanthanide-lanthanide inside fullerenes toward robust redox-active molecular magnets.Acc. Res. 2019; 2981-2993Google 12Liu Zalibera Ray Samoylova N.A. C.-H. Rosenkranz Schiemenz al.Air-stable nanomagnets spins radical-bridged metal–metal bond.Nat. 10: 571Google Albeit synthetically challenging, implementation radical-bridging ligands has proven particularly successful approach, attributed able penetrate electron density resulting enhanced centers. stabilization, isolation, purification occurred bridging radicals, gave rise giant coercive approximately 8 T SMM.10Demir Scholar,13Demir Gonzalez M.I. Darago L.E. Giant coercivity high temperatures N23? dilanthanide upon ligand dissociation.Nat. 2017; 8: 2144Google Scholar,14Gould C.A. Mu Chakarawet K. Demir Substituent 2,2?-bipyrimidine complexes.J. Am. Soc. 2020; 142: 21197-21209Google Although desirable generation radical-bridges necessitates dramatically limits number target adds additional layer sensitivity reactivity open-shell employed. route show at enhance using p-block donor atoms, valence facilitate better penetration energy matching, compared more commonly employed lighter C/N/O/Cl atoms.15Guo F.S. Bar A.K. Main interface magnetism.Chem. 119: 8479-8505Google theory supported observations, doubled interaction sulfur-bridged dinuclear SMM, [(C5H4Me)2Dy(?-SSiPh3)]2, similar chloride-bridged [Cp2Dy(thf)(?-Cl)]2, consequently results efficient mitigation tunneling processes low temperatures.16Tuna Smith Bodensteiner Chibotaru L.F. barrier organodysprosium 6976-6980Google exploration heavier construction scarce.15Guo Noteworthy series DyIII–P, DyIII–As, DyIII–Sb bonds, demonstrated critical role moderating magnitude barriers (Ueff) among different pnictogen donors, showing decreasing ability P, As Sb.17Pugh T. Tuna Influencing properties phosphorus ligands.Nat. 6: 7492Google 18Pugh Magneto-structural correlations arsenic- selenium-ligated 2016; 7: 2128-2137Google 19Pugh Antimony-ligated catalysts stibine dehydrocoupling.Chem. 2073-2080Google Similarly, impact covalent bonding dynamics illustrated DyIII–GeII DyIII–SnII respectively, former stronger equatorial position leading lower effective spin-reversal faster magnetization.20Chen S.-M. Xiong Zhang Y.-Q. Ma Sun H.-L. Wang B.-W. al.Dysprosium unsupported DyIII–GeII/SnII metal-metal (Camb). 55: 8250-8253Google Notably, derived coupled been observed multinuclear 3d-4f clusters,7Mondal complexes,13Demir EMFs,21Chen Yadav al.Selective arc-discharge Dy2S-clusterfullerenes isomer-dependent single molecule 6451-6465Google each system operates unit reversal moment akin transition contrast, remains purely lanthanide-based polynuclear bridges those slow ascribed effect.7Mondal Scholar,8Langley Scholar,22Sessoli Gatteschi Caneschi Novak M.A. metal-ion cluster.Nature. 1993; 365: 141-143Google Thus, pursued consisting late element bridges. latter will potentially afford sufficient separation exchange-coupled levels magnetization. Bismuth long thought heaviest non-radioactive periodic table.23de Marcillac Coron N. Dambier Leblanc Moalic J.-P. Experimental detection ?-particles radioactive decay natural bismuth.Nature. 2003; 422: 876-878Google It possesses principle (6s), These characteristics create centers, when its V homologs.24Lichtenberg C. Well-defined, BiI BiII compounds: towards transition-metal-like behavior.Angew. 484-486Google best our knowledge, no coordinating ion one or reported. Moreover, contain both exceedingly rare, studies even scarcer. remarkable MnII–BiIII heterobimetallic complex exhibiting shortest known Mn?Bi distance, transfer BiIII spin-bearing isotropic MnII elucidated examining zero-field splitting parameter center, resembles atom effect halide species.25Pearson T.J. Fataftah M.S. Freedman D.E. Enhancement Mn–Bi complex.Chem. 11394-11397Google poor owing hard-soft linkages challenging employ chemistry.26Rookes T.M. Wildman E.P. Balázs Gardner Wooles A.J. Gregson Scheer Liddle S.T. Actinide–pnictide (An?Pn) spanning non-metal, metalloid, combinations (An=U, Th; Pn=P, As, Sb, Bi).Angew. 57: 1332-1336Google Scholar,27Eulenstein A.R. Franzke Y.J. Lichtenberger Wilson R.J. Deubner H.L. Kraus al.Substantial ?-aromaticity anionic heavy-metal [[email protected]12]4?.Nat. 13: 149-155Google Only SmIII Bi known,28Evans Gonzales S.L. Ziller J.W. Organosamarium-mediated bismuth-bismuth bonds: X-ray structure dibismuth planar M2(?-?2:?2-Bi2) unit.J. 1991; 9880-9882Google along handful intermetalloid ions.29Lips Clérac Dehnen protected]6Bi8]4?: mini-fullerane-type zintl anion ion.Angew. 50: 960-964Google 30Weinert Müller Harms Origin location electrons protons during formation clusters protected]3?xH3?2xBi10+x]3? (x=0, 1).Angew. 53: 11979-11983Google 31Weinert Weigend Subtle atomic ratio, charge Lewis basicity selection stability: [([email protected]2Bi11)(?-Bi)2([email protected]2Bi11)]6–.Chemistry. 18: 13589-13595Google 32Lips Ho?y?ska Linne U. Schellenberg I. Pöttgen al.Doped semimetal clusters: ternary, anions protected]7Bi7]4– protected]4Bi9]4– (Ln La, Ce) adjustable properties.J. 134: 1181-1191Google unique electronic physical associated sparked develop magnetically If major challenges preparation overcome, Ln–Bi species enrich 4f chemistry, discoveries types phenomena. report isolation connected exceptional unit, forming Ln2Bi6 heterometallocubane. neither metallocubane formula M2Bi6, nor moiety any compound, yet Significantly, mediated bridge led Ln-SMMs. Among few reported, primarily solid-state fragments, involving most relevant this study. p-orbital than do single-site bismuthine (BiR3 BiR2?).29Lips general d- f-elements starts intermetallic prepared reaction alkali metals elements.33Goicoechea J.M. Hull M.W. Sevov S.C. Heteroatomic deltahedral structures closo-[Bi3Ni4(CO)6]3?, closo-[Bi4Ni4(CO)6]2?, [Bi3Ni6(CO)9]3?, closo-[Nix@{Bi6Ni6(CO)8}]4–.J. 2007; 129: 7885-7893Google Scholar,34Min X. I.A. Pan F.-X. L.-J. Matito Z.-M. al.All-metal antiaromaticity Sb4-type lanthanocene anions.Angew. 5531-5535Google protocol then polar solvents, ethylenediamine, order dissolve starting materials products. Drawbacks routes include yields desired products unavoidable byproducts, precludes scalable syntheses pure and, result, prevents chemical properties.35Wilson Weinert Intermetalloid heterometallic combining (semi)metals f-block metals.Chem. 8506-8554Google Modification organic shows great promise improving solubility, stability, reactivity, products.36Schenk Schnepf [AuGe18{Si(SiMe3)3}6]?: soluble Au–Ge cable?.Angew. 46: 5314-5316Google Therefore, facile readily product demands suitable materials. Decamethylsamarocene, reducing SmII, produced molecule.28Evans Its hints redoxchemistry being generally crucial Importantly, unfavorable reduction potentials, analogous divalent precursor reagent available Tb Dy, prevalent anisotropy.37Woen D.H. Chapter 293. Expanding +2 oxidation state rare-earth metals, uranium, thorium complexes.in: Bünzli J.-C.G. Pecharsky V.K. Handbook Physics Chemistry Rare Earths. Elsevier, 2016: 337-394Google addition, Bi–Bi bonded multiple direct reductive organobismuth (BiR3, BiR2X, BiRX2, BiCl3) possible solution.38Balázs Breunig H.J. Organometallic Sb–Sb bonds.Coord. 2004; 248: 603-621Google [K(THF)4]2[Cp?2Ln2Bi6], mixing Cp?2Ln(BPh4) Dy)39Demir Zadrozny Nippe Exchange bipyrimidyl 18546-18549Google triphenylbismuth THF subsequent potassium graphite 45°C (Figure 1; Tables S1 S2). KC8 generates reduce Bi?I, enabling 1-Ln. byproducts hexane-soluble Cp?2LnPh(THF), 2-Ln S1; S3 S4) poorly KBPh4, precipitates graphite. Diffusion diethyl ether into solutions ?35°C afforded crystals 1-Tb 1-Dy analysis stabilization unexpected cyclo-Bi66? observations made Organobismuth non-bulky substituents rearrange give flexible homocycles, equilibria rings polymers Scholar,40Breunig Rösler Lork rings: (RBi)3 (RBi)4, R=(Me3Si)2CH.Angew. 1998; 37: 3175-3177Google examples cyclic hexamer metal. closest structural contains six icosahedral nickel ions.33Goicoechea Complexes isostructural crystallize monoclinic space P21/n. shown Figure 1, LnIII chair confirmation cyclohexane, distorted cube. Each center coordinated Cp? ligand, Ln–Cp? ring centroid distance 2.338(1) 2.365(1) Å 1-Dy, three close neighbors (see 1). edges cube lengths. distances 3.029(1)–3.042(1) 3.027(1)–3.036(1) significantly longer (2.82–2.87 Å), comparable (>2.99 Å).41Jones J.S. Gabbaï F.P. Group 15 bonds.Molecular Metal-Metal Bonds. : 519-558https://doi.org/10.1002/9783527673353.ch15Google suggests 1-Ln described would expected stereochemically given conformation unit. 3.055(1)–3.070(1) 3.042(1)–3.060(1) 0.2 shorter 3.287 Sm–Bi bonds.28Evans difference explained factors. First, result smaller radii TbIII DyIII contraction.42Cordero Gómez Platero-Prats A.E. Revés Echeverría Cremades Barragán Alvarez Covalent revisited.Dalton Trans. 2008; 2832-2838Google Second, Sm higher bond order, greater localized multiply units relatively weaker donating contrast situation Third, hexacoordinate, allowing closer eight-coordinate ion. sum Bi, 3.42 3.40 respectively.42Cordero shortness indicates possibly signals covalency (although unlikely 4f-orbitals). Indeed, inferred involve increased consist elements.20Chen Scholar,32Lips For example, calculations protected]4Bi9]4? indicated delocalization free pair site empty dz2-orbital center.32Lips compressed body diagonal 4.043(1) 4.034(1) Dy average 5.632(1) 5.617(1) corresponding diagonally opposite Bi–Ln–Bi angles 101.02(2)°–102.19(2)° 101.06(2)°–102.45(2)° larger 90° angle ideal

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lanthanide single molecule magnets: progress and perspective.

The last few years have seen a huge renaissance in the study of single molecule magnets (SMMs) thanks to the extensive applications of lanthanide ions with large inherent anisotropy in molecular magnetism. Particularly, the recent theoretical developments and the experimental expansion into the organometallic avenue have led to an eye-catching boost in this field. Here we highlight the recent p...

متن کامل

Strategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets.

Lanthanide-based single-molecule magnets are leading materials for achieving magnetization blocking at the level of one molecule. In this paper, we examine the physical requirements for efficient magnetization blocking in single-ion complexes and identify the design principles for achieving very high magnetization blocking barriers in lanthanide-based compounds. The key condition is the prepond...

متن کامل

Tetraanionic biphenyl lanthanide complexes as single-molecule magnets.

Inverse sandwich biphenyl complexes [(NN(TBS))Ln]2(μ-biphenyl)[K(solvent)]2 [NN(TBS) = 1,1'-fc(NSi(t)BuMe2)2; Ln = Gd, Dy, Er; solvent = Et2O, toluene; 18-crown-6], containing a quadruply reduced biphenyl ligand, were synthesized and their magnetic properties measured. One of the dysprosium biphenyl complexes was found to exhibit antiferromagnetic coupling and single-molecule-magnet behavior wi...

متن کامل

Single-Molecule Magnets

Single-molecule magnets (SMMs) continue to be an attractive research field because of their unique and intriguing properties and potential applications in high-density data storage technologies and molecular spintronics. The anisotropic barrier (U) of an SMM is derived from a combination of an appreciable spin ground state (S) and uniaxial Ising-like magneto-anisotropy (D). The magnet-like beha...

متن کامل

Actinide-based single-molecule magnets.

Actinide single-molecule magnetism has experienced steady growth over the last five years since the first discovery of slow magnetic relaxation in the mononuclear complex U(Ph(2)BPz(2))(3). Given their large spin-orbit coupling and the radial extension of the 5f orbitals, the actinides are well-suited for the design of both mononuclear and exchange-coupled molecules, and indeed at least one new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2022

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2021.11.007